A indide is an inorganic chemical compound containing anions composed of indium atoms. Indium is right of the Zintl border in the periodic table, so indides are not Zintl compounds. They are a kind of intermetallic compound.

Related compounds include the thallides and gallides.

Indides contain clusters of indium atoms. There are compounds with 4, 5, 6, 8 11 atoms.[1] Four-atom clusters are tetrahedral and have interatomic distance of 3.171 Å, more dense than in indium metal.[2]

Production

edit

Indides can be prepared by melting metals together under an inert atmosphere. For some combinations of metal, the boiling tmeperatuire of one may exceed the melting point of another, so the reaction is done in a sealed tantalum, niobium or molybdenum capsule.[3] An alternative is to use excess indium and crystallise from a molten indium flux.[3]

ref dump

edit

more from intro of https://doi.org/10.1002/zaac.202300112 https://doi.org/10.1002/zaac.200700305 https://doi.org/10.1021/ic8006124 https://doi.org/10.1002/zaac.200700358 http://dx.doi.org/10.5012/bkcs.2013.34.6.1656 https://doi.org/10.1515/znb-2007-1214 The Gold-rich Indide Sr I Mutsa, UC Rodewaldb, Z Vasyl'I, R Pöttgenb https://doi.org/10.1021/ic2016275 https://doi.org/10.1021/ic701127f https://doi.org/10.1515/znb-2011-1003 https://doi.org/10.5012/bkcs.2013.34.12.3847 https://doi.org/10.1515/znb-2011-1104 https://doi.org/10.1021/ic8019765 https://link-springer-com.wikipedialibrary.idm.oclc.org/article/10.1134/S0020168523040106/tables/3 (melting points) https://iopscience.iop.org/article/10.1088/1674-1056/ac0a60/meta https://doi.org/10.1039/C4DT03783A https://doi.org/10.1515/zkri-2020-0012 https://doi.org/10.1016/j.intermet.2011.07.029 https://journals.aps.org/prb/abstract/10.1103/PhysRevB.107.174411 https://doi.org/10.1021/cg301532b https://link.springer.com/article/10.1007/s12039-013-0499-2 https://openurl.ebsco.com/EPDB%3Agcd%3A16%3A20871808/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A93596039&crl=c https://doi.org/10.1021/ic401171v https://doi.org/10.1016/j.jallcom.2014.10.170 https://doi.org/10.1080/14786435.2015.1052859 https://doi.org/10.1515/zkri-2022-0024 https://doi.org/10.1515/znb-2011-0414 https://doi.org/10.1002/zaac.201600228 https://doi.org/10.1016/j.jssc.2015.10.032 review https://doi.org/10.1021/cg401864p https://doi.org/10.5560/znb.2014-4192 https://journals.jps.jp/doi/abs/10.7566/JPSJ.88.074702 https://iopscience.iop.org/article/10.1088/1742-6596/592/1/012047/meta https://journals.jps.jp/doi/abs/10.7566/JPSJ.86.084710 https://doi.org/10.1016/j.jallcom.2016.10.047 https://journals.jps.jp/doi/abs/10.7566/JPSCP.38.011099 https://iopscience.iop.org/article/10.1088/1742-6596/592/1/012007/meta https://arxiv.org/abs/1404.1660

List

edit
formula system space group unit cell volume density comment Reference
LiIn [4][5] lots of referencs for these
Li13In3 [5]
Li2In [5]
Li3In2 [5]
NaIn [4]
Na7KIn4 Pbam a=b=16.3283 c=11.3094 Z=8, 3015.25 [In4]8− tetrahedra [1]
Ca54In13B1.6H25.4 cubic Im3 a = 16.3608 Z = 2 4376.7 2.768 [6]
(Ca4N)[In2] tetragonal I41/amd a = 4.9114 c = 29.077 [7]
(Ca7N4)[In] a=11.68 b=12.13 c=3.64 bronze colour [8]
(Ca19N7)[In4]2 cubic a = 14.7165 [7]
Ca8In2SiN4 orthorhombic Ibam a = 12.904 b = 9.688 c = 10.899 Z = 4 nitridosilicate [9]
ScNi4In cubic F43m a=6.872 [3]
ScNi2In cubic Fm3m a=6.256 [3]
Sc2Ni2In tetragonal P4/mbm a=7.1679 c=3.33154 [3]
KCo2In9 hexagonal P6/mmm a=8.7915 c=4.2364 [10]
KNi2In9 hexagonal P6/mmm a=8.7915Å c=4.238 [10]
SrIn4 [5]
SrIn2 [5]
Sr3In11 [5]
SrIn [5]
Sr11In7 [5]
Sr5In3 [5]
Sr2.33In0.92 [5]
Sr6In4(In0.32Li0.92)N2.49 cubic a = 14.3752 Z=8 2959.4 4,744 [11]
(Sr19N7)[In4]2 cubic a = 15.610 [7]
Li2Y5In9 tetragonal P4/nmm a = 10.1242 c = 15.109 Z+4 [12]
YMnIn hexagonal P63/mmc a=5.741 c=9.345 [3]
YNi9In2 tetragonal P4/mbm a=8.222 c=4.827 [3]
YNi4In cubic F43m a=7.034 [3]
YNiIn hexagonal P62m a=7.486 c=3.784 [3]
YNiIn2 Cmcm a=4.314 b=10.406 c=7.276 [3]
YNi1–0.50In1–1.50 hexagonal P62m a=7.474–7.566 c=3.773–3.805 [3]
Y2Ni2In orthorhombic Cmmm a=3.900 b=14.186 c=3.694 [3]
Y2Ni2-xIn tetragonal P4/mbm a=7.365 c=3.679 [3]
Y12Ni6In cubic Im3 a=9.711 [3]
Na8K23Cd12In48 hexagonal P6/mmm [5]
BaIn4 [5]
BaIn2 [5]
BaIn [5]
Ba9In4 [5]
Ba9[In]4[H] tetrahedral I4/m a = 13.973 c = 5.918 Z = 2 [13]
Ba6In4.78N2.72 cubic Fd3m a=15.216 Z=8 [11]
(Ba6N)[In5] trigonal R3c a = 8.234 c = 44.12 Z = 6 2590.6 metallic grey [14]
(Ba38N18)[In5]2[In8] monoclinic C2/m a=57.334 b=7.9101 c=10.1991 β=97.237° Z=2 [15]
BaLi2.1In1.9 hexagonal P63/mmc a=10.410 c=8.364 Z=6 785.0 [5]
BaLi1.12In0.98 hexagonal P6/mmm a=17.469 c=10.6409 Z=30 2813.5 [5]
BaLi1.06In1.16 rhombohedral R3c a=18.894 c=85.29 Z=276 26368 [5]
Li35In45Ba39N9 tetragonal I42m a=15.299 c=30.682 Z=2 7182 [5]
LiIn2Ba3N0.83 cubic Fd3m a=14.913 Z=8 3316.7 [5]
Ba11In6O3 tetragonal I4/mcm a = 15.558 c = 11.216 Z = 4 indide oxide [16]
LaNi7In6 orthorhombic Ibam a=8.066 b=9.248 c=12.465 [3]
LaNi9In2 tetragonal P4/mbm a=8.339 c=4.877 [3]
LaNi3In6 orthorhombic Pmmn a=4.388 b=12.11 c=7.574 [3]
LaNi5In hexagonal P63/mmc a=495.7 c=19.969 [3]
LaNi3In2 hexagonal P6/mmm a=9.334 c=4.356 [3]
LaNiIn4 orthorhombic Cmcm a=4.484 b=16.885 c=7.199 [3]
La4Ni7In8 orthorhombic Cmmm a=14.757 b=24.187 c=4.398 [3]
La5Ni6In11 orthorhombic Cmmm a=14.640 b=14.674 c=4.439 [3]
LaNi2In orthorhombic Pmma a=5.254 b=4.131 c=7.169 [3]
LaNiIn hexagonal P62m a=7.613 c=4.035 [3]
LaNi0.5In1.5 hexagonal P6/mmm a=4.837 c=4.036 [3]
La2Ni2In tetragonal P4/mbm a=7.611 c=3.918 [3]
La12Ni6In cubic Im3 a=10.209 [3]
La4RuIn cubic F43m a=14.241 Z=12 2888.4 superconductor Tc=0.61K [2][17]
CeCoIn5 tetragonal P4/mmm a=4.601 c=7.540 superconductor Tc=2.3 [3][18]
Ce2CoIn8 tetragonal P4/mmm a=4.640 c=12.251 [3]
Ce4RuIn cubic F43m a=13.963 Z=12 2722.5 [2]
Ce23Ru7In4 hexagonal P63mc a = 9.861 c = 22.52 melt congruently 683°С [19]
CeRhIn5 [3]
CeIrIn5 [3]
Pr6Fe13In tetragonal I4/mcm a = 8.103 c = 2352.7 [3]
PrCoIn5 tetragonal P4/mmm A=4.596 C=7.503 [3]
Pr2CoIn8 tetragonal P4/mmm a=4.605 c=12.193 [3]
PrCo2In orthorhombic Pmma a=5.119 B=4.089 c=7.197 [3]
Pr12Co6In Im3 a=9.920 [3]
Pr4RuIn cubic F43m a=13.999 Z=12 2743.4 [2]
Pr23Ru7In4 hexagonal P63mc a = 9.9260 c = 22.4109 melt incongruently 756°С [19]
Pr21Ru8.2In5 tetragonal I4/mcm a=11.979 c=25.326 Z=4 3634.1 7.972 [20]
NdMnIn cubic Fd3_m a = 8.325 [3]
Nd6Fe13In tetragonal I4/mcm a = 8.088 c = 23.431 [3]
NdCoIn5 tetragonal P4/mmm a=4.590 c=7.502 [3]
Nd2CoIn8 tetragonal P4/mmm a=4.608 c=12.172 [3]
NdCo2In orthorhombic Pmma A=5.096 b=4.082 c=7.158 [3]
Nd12Co6In Im3 a=9.866 [3]
Nd4RuIn cubic F43m a=13.911 Z=12 2692.2 [2]
Nd26Ru8In9 tetragonal P4/mbm a=12.1415 c=16.2303 Z=2 2392.6 7.762 melt 812°С [20]
Sm6Fe13In tetragonal I4/mcm a = 8.065 c = 23.202 [3]
SmCoIn5 tetragonal P4/mmm a=4.577 c=7.463 [3]
Sm2CoIn8 tetragonal P4/mmm a=4.583 c=12.101 [3]
SmCo2In orthorhombic Pmma a=5.080 b=4.060 c=7.127 [3]
Sm2Co9In3 orthorhombic Cmmm a=22.834 b=5.020 c=4.0842 [3]
Sm6Co2In orthorhombic Immm a=9.549 b=9.583 c=10.068 [3]
Sm12Co6In Im3 a=9.786 [3]
Sm4RuIn cubic F43m a=13.809 Z=12 2633.1 [2]
GdMnIn hexagonal P63/mmc a=5.778 c=9.412 [3]
GdCoIn5 tetragonal P4/mmm a=4.567 c=7.461 [3]
Gd2CoIn8 tetragonal P4/mmm a=4.569 c=12.021 [3]
GdCo2In orthorhombic Pmma a=5.052 b=4.055 c=7.124 [3]
Gd6Co2In orthorhombic Immm a=9.544 b=9.597 c=10.041 [3]
Gd14Co2In3 tetragonal P42/nmc a=9.615 c=23.336 [3]
Gd4RhIn cubic F43m a=13.707 Z=12 2575.3 [2]
Gd6Ru2In orthorhombic Immm a=9.435 b=9.604 c=10.420 Z=4 944.2 8.867 [20]
EuIn2 [21]
Eu3Co2In15 tetragonal P4/mbm a = 14.789 c = 4.3945 [10]
Eu3Cu2In9 metallic [22]
Eu3Rh2In15 tetragonal P4/mbm a = 14.8346 c = 4.3970 Z=2 967.6 8.14 [23]
EuAg4In8 tetragonal I4/mmm a=9.7937 c=5.7492 [24]
Eu3Ag2In9 orthorhombic Immm a = 4.8370 b = 10.6078 c = 13.9195 Z=2 714.21 7.928 metallic [22]
TbCoIn5 tetragonal P4/mmm a=4.549 c=7.425 [3]
Tb2CoIn8 tetragonal P4/mmm a=4.568 c=12.008 [3]
TbCo2In orthorhombic Pmma a=5.033 b=4.050 c=7.122 [3]
Tb6Co2.14In0.86 orthorhombic Immm a=9.528 b=9.450 c=9.969 [3]
Tb14Co2In3 tetragonal P42/nmc a=9.544 c=23.225 [3]
Tb4RhIn cubic F43m a=13.603 Z=12 2517.1 [2]
DyMnIn hexagonal P63/mmc a=5.734 c=9.309 [3]
DyCoIn5 tetragonal P4/mmm a=4.545 c=7.418 [3]
Dy2CoIn8 tetragonal P4/mmm a=4.561 c=11.994 [3]
DyCo2In orthorhombic Pmma a=4.998 b=4.034 c=7.060 [3]
Dy6Co2.14In0.86 orthorhombic Immm a=9.401 b=9.438 c=9.938 [3]
Dy14Co2In3 tetragonal P42/nmc a=9.500 c=23.002 [3]
DyCo4In cubic F43m a=7.087 [3]
Dy3Co2In4 hexagonal P6 a=7.867 c=3.645 [3]
Dy4RhIn cubic F43m a=13.545 Z=12 2485.1 [2]
HoCoIn5 tetragonal P4/mmm a=4.547 c=7.411 [3]
Ho2CoIn8 tetragonal P4/mmm a=4.540 c=11.964 [3]
HoCo2In orthorhombic Pmma a=4.993 b=4.029 c=7.054 [3]
Ho6Co2.14In0.86 orthorhombic Immm a=9.348 b=9.430 c=9.906 [3]
Ho14Co2In3 tetragonal P42/nmc a=9.459 c=22.913 [3]
HoCo4In cubic F43m a=7.068 [3]
Ho3Co2In4 hexagonal P6 a=7.866 c=3.605 [3]
ErMnIn hexagonal P63/mmc a=5.686 c=9.260 [3]
Er2CoIn8 tetragonal P4/mmm a=4.560 c=11.958 [3]
Er14Co2In3 tetragonal P42/nmc a=9.413 c=22.793 [3]
ErCo4In cubic F43m a=7.049 [3]
Er3Co2In4 hexagonal P6 a=7.850 c=3.583 [3]
Er6Co17.92In14 Pm3 a=8.663 [3]
Er10Co9In20 tetragonal P4/mmm a=13.253 c=9.078 [3]
Er4RhIn cubic F43m a=13.425 Z=12 2419.6 [2]
TmCoIn5 tetragonal P4/mmm a=4.532 c=7.387 [3]
Tm2CoIn8 tetragonal P4/mmm a=4.544 c=11.934 [3]
Tm6Co17.92In14 Pm3 a=8.655 [3]
TmCo4In cubic F43m a=7.042 [3]
Tm10Co9In20 tetragonal P4/mmm a=13.166 c=9.097 [3]
Tm3Co2In4 hexagonal P6 a=7.843 c=3.556 [3]
Tm6Co2.14In0.86 orthorhombic Immm a=9.288 b=9.301 c=9.793 [3]
Tm14Co2In3 tetragonal P42/nmc a=9.368 c=22.691 [3]
Tm4RhIn cubic F43m a=13.378 Z=12 2394.3 [2]
Yb~51In13H27 cubic Im3 a = 16.218 Z = 2 Yb54? [25]
YbCoIn5 tetragonal P4/mmm a=4.5590 c=7.433 [3]
YbCu6In6 tetragonal I4/mmm a = 9.220 c = 5.398 [26]
LuCoIn5 tetragonal P4/mmm a=4.527 c=7.359 [3]
Lu6Co17.92In14 Pm3 a=8.652 [3]
LuCo4In cubic F43m a=7.029 [3]
Lu10Co9In20 tetragonal P4/mmm a=13.160 c=9.106 [3]
Lu3Co2In4 hexagonal P6 a=7.814 c=3.521 [3]
Lu6Co2.14In0.86 orthorhombic Immm a=9.238 b=9.241 c=9.727 [3]
Lu14Co2In3 tetragonal P42/nmc a=9.333 c=22.633 [3]
Lu37Ru16.4In4 Ia3d a = 27.562 [27]
Lu4RhIn cubic F43m a=13.297 Z=12 2351.1 [2]
IrIn2 [28]
IrIn3 [28]
Ir2In8S tetragonal P42/mnm [29]
Sc1.024Ir2In0.976 cubic Fm3m a = 639.97 [30]
Sc3Ir1.467In4 hexagonal P6 a = 769.99 c = 684.71 [30]
Ir2In8Se tetragonal P42/mnm a = 9.9200 c = 10.1092 Z=4 995.43 9.2213 [29]
SrIrIn4 [31]
SrIr2In8 orthorhombic Pbam a = 13.847 b = 16.113 c = 4.3962 [32]
SrIrIn6 orthorhombic Pmma a = 8.5234 b = 4.3454 c = 10.5918 Z=2 392.3 8.20 Ir@In9 tricapped trigonal prism+In@In8 cube [28]
SrIr9In18 tetragonal P4m2 a = 8.1121 c = 8.5449 Z=1 562.3 11.47 [31]
Ir2In8Te tetragonal P42/mnm a = 10.005 c = 10.196 Z=4 1020.8 9.3091 [29]
Y4IrIn cubic F43m a=13.686 Z=12 2563.5 [2]
La4IrIn cubic F43m a=14.372 Z=12 2968.3 superconductor Tc=0.96K [2][17]
Ce4IrIn cubic F43m a=14.132 Z=12 2822.1 [2]
Pr4IrIn cubic F43m a=14.044 Z=12 2770.1 [2]
Nd4IrIn cubic F43m a=13.990 Z=12 2738.0 [2]
Sm4IrIn cubic F43m a=13.859 Z=12 2661.7 [2]
Gd4IrIn cubic F43m a=13.723 Z=12 2584.3 [2]
EuIrIn4 orthorhombic Pmma a = 8.6065, b = 4.3033 c = 7.5765 280.6 9.51 metallic grey; air stable [21]
EuIrIn4 orthorhombic Cmcm a = 4.5206 b = 16.937 c = 7.266 Z=4 568.5 9.387 metallic [33]
EuIr2In8 orthorhombic Pbam a = 13.847 b = 16.118 c = 4.3885 [32]
Eu3Ir2In15 tetragonal P4/mbm a = 14.8580 b = 14.8580 c = 4.3901 [21][34]
Tb4IrIn cubic F43m a=13.653 Z=12 2545.0 [2]
Dy4IrIn cubic F43m a=13.567 Z=12 2497.2 [2]
Ho4IrIn cubic F43m a=13.539 Z=12 2481.9 [2]
Er4IrIn cubic F43m a=13.441 Z=12 2428.3 [2]
Tm4IrIn cubic F43m a = 13.4077 [35]
Lu20Ir5In3 hexagonal P62m a=16.3058 c=9.2043 2074.8 light grey; air stable [36]
CaPtIn2 orthorhombic Cmcm a = 4.463 b = 16.595, c = 7.568 560.5 8.23 [37]
CaPtIn4 orthorhombic Cmcm a = 4.463 b = 16.595 c = 7.568 560.5 8.23 conchoidal fracture [37]
EuPtIn4 orthorhombic Cmcm a=4.542 b=16.955 c=7.389 [38]
Lu4PtIn cubic F43m a = 13.380 [35]
Lu20Pt5In3 hexagonal P62m a=16.1853 c=9.1936 2120.1 light grey; air stable [36]
Lu26Pt7.55In9.45 tetragonal P4/mbm a = 11.6532 c = 15.4746 Z=2 [39]
K3Au5In orthorhombic Imma a = 5.562 b = 19.645 c = 8.502 Z = 4 [40]
SrAu1.1In2.9 tetragonal I4/mmm a=4.5841 c=12.3725 Z=2 [41]
SrAu1.4Sn2.6 tetragonal I4/mmm a=4.6447 c=11.403 Z=2 [41]
SrAu2In2 orthorhombic Pnma a = 8.530 b = 4.598 c = 12.283 Z = 4 482.00 9.801 silvery [42]
SrAuIn3 tetragonal I4/mmm a=4.5770 c=12.371 Z=2 259.16 8.024 silvery [42]
BaAu2In2 orthorhombic Pnma a = 8.755b = 4.712 c = 12.368 Z = 4 510.2 9.906 silvery [42]
BaAuIn3 tetragonal I4/mmm a = 4.8107 c = 11.980 Z=2 276.52 9.088 [43]
EuAu2In4 orthorhombic Pnma a = 18.5987 b = 4.6616 c = 7.4669 [44]
EuAuIn4 orthorhombic Cmcm a = 4.6080 b = 17.0454 c = 7.5462 [44]
YbAu2In4 monoclinic P21/m a = 7.654 b = 4.542 c = 9.591 β = 107.838° [45]
Yb2Au3In5 orthorhombic Cmc21 a = 4.5351 b = 26.824 c = 7.464 [45]
Yb3AuGe2In3 hexagonal P62m a = 7.3153 c = 4.4210 [46]


References

edit
  1. ^ a b Janesch, Melissa; Schwinghammer, Vanessa F.; Shenderovich, Ilya G.; Gärtner, Stefanie (2023-11-02). "Synthesis and characterization of ternary trielides Na 7 K Tr 4 [ Tr =In or Tl] including [ Tr 4 ] 8− Tetrahedra". Zeitschrift für anorganische und allgemeine Chemie. 649 (21). doi:10.1002/zaac.202300112. ISSN 0044-2313.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w Pöttgen, Rainer (2020), "The Gd4RhIn type: Crystal chemistry and properties", Handbook on the Physics and Chemistry of Rare Earths, vol. 58, Elsevier, pp. 1–38, doi:10.1016/bs.hpcre.2020.09.001, ISBN 978-0-12-821112-0, retrieved 2024-05-25
  3. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct Kalychak, Yaroslav M.; Zaremba, Vasyl' I.; Pöttgen, Rainer; Lukachuk, Mar'yana; Hoffmann, Rolf-Dieter (2004), "Rare earth–transition metal–indides", Handbook on the Physics and Chemistry of Rare Earths, vol. 34, Elsevier, pp. 1–133, doi:10.1016/s0168-1273(04)34001-8, ISBN 978-0-444-51587-2, retrieved 2024-05-26
  4. ^ a b Pauly, Hermann; Weiss, Alarich; Witte, Helmut (1968-07-01). "Phasenbreite und Valenzelektronenkonzentration (VEK) in den ternären kubischen Zintlphasen vom NaTi-Typ". International Journal of Materials Research. 59 (7): 554–558. doi:10.1515/ijmr-1968-590706. ISSN 2195-8556.
  5. ^ a b c d e f g h i j k l m n o p q r s t u Smetana, Volodymyr; Vajenine, Grigori V.; Kienle, Lorenz; Duppel, Viola; Simon, Arndt (2010-08). "Intermetallic and metal-rich phases in the system Li–Ba–In–N". Journal of Solid State Chemistry. 183 (8): 1767–1775. doi:10.1016/j.jssc.2010.05.021. {{cite journal}}: Check date values in: |date= (help)
  6. ^ Blankenship, Trevor V.; Chen, Banghao; Latturner, Susan E. (2014-05-27). "Ca 54 In 13 B 4– x H 23+ x  : A Complex Metal Subhydride Featuring Ionic and Metallic Regions". Chemistry of Materials. 26 (10): 3202–3208. doi:10.1021/cm5007982. ISSN 0897-4756.
  7. ^ a b c Kirchner, Martin; Schnelle, Walter; Wagner, Frank R.; Kniep, Rüdiger; Niewa, Rainer (2005-06). "( A 19 N 7 )[In 4 ] 2 ( A = Ca, Sr) and (Ca 4 N)[In 2 ]: Synthesis, Crystal Structures, Physical Properties, and Chemical Bonding". Zeitschrift für anorganische und allgemeine Chemie. 631 (8): 1477–1486. doi:10.1002/zaac.200500029. ISSN 0044-2313. {{cite journal}}: Check date values in: |date= (help)
  8. ^ Höhn, Peter; Auffermann, Gudrun; Ramlau, Reiner; Rosner, Helge; Schnelle, Walter; Kniep, Rüdiger (2006-10-13). "(Ca 7 N 4 )[M x ] (M=Ag, Ga, In, Tl): Linear Metal Chains as Guests in a Subnitride Host". Angewandte Chemie International Edition. 45 (40): 6681–6685. doi:10.1002/anie.200601726. ISSN 1433-7851.
  9. ^ Dickman, Matthew J.; Schwartz, Benjamin V. G.; Latturner, Susan E. (2017-08-07). "Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca 8 In 2 SiN 4 and Semiconductor Ca 3 SiN 3 H". Inorganic Chemistry. 56 (15): 9361–9368. doi:10.1021/acs.inorgchem.7b01532. ISSN 0020-1669.
  10. ^ a b c Lei, Xiao-Wu; Zhong, Guo-Hua; Li, Long-Hua; Hu, Chun-Li; Li, Min-Jie; Mao, Jiang-Gao (2009-03-16). "Eu 3 Co 2 In 15 and KM 2 In 9 (M = Co, Ni): 3D Frameworks Based on Transition Metal Centered In 9 Clusters". Inorganic Chemistry. 48 (6): 2526–2533. doi:10.1021/ic8019765. ISSN 0020-1669.
  11. ^ a b Bailey, Mark S.; Shen, Daniel Y.; McGuire, Michael A.; Fredrickson, Daniel C.; Toby, Brian H.; DiSalvo, Francis J.; Yamane, Hisanori; Sasaki, Shinya; Shimada, Masahiko (2005-09-01). "The Indium Subnitrides Ae 6 In 4 (In x Li y )N 3- z (Ae = Sr and Ba)". Inorganic Chemistry. 44 (19): 6680–6690. doi:10.1021/ic050613i. ISSN 0020-1669.
  12. ^ Sun, Zhong-Ming; Mao, Jiang-Gao; Pan, Da-Chun (2005-09-01). "Novel Corrugated In 9 Anionic Layer in Li 2 Y 5 In 9 : Square Pyramidal In 5 Clusters Interconnected by Unusual Butterfly In 4 Clusters". Inorganic Chemistry. 44 (19): 6545–6549. doi:10.1021/ic050462j. ISSN 0020-1669.
  13. ^ Wendorff, Marco; Scherer, Harald; Röhr, Caroline (2010-05). "Das Indid‐Hydrid Ba 9 [In] 4 [H]: Synthese, Kristallstruktur, NMR‐Spektroskopie, Chemische Bindung". Zeitschrift für anorganische und allgemeine Chemie. 636 (6): 1038–1044. doi:10.1002/zaac.201000010. ISSN 0044-2313. {{cite journal}}: Check date values in: |date= (help)
  14. ^ Schlechte, A.; Prots, Yu.; Niewa, R. (2004-04). "Crystal structure of hexabarium mononitride pentaindide, (Ba6N)[In5]". Zeitschrift für Kristallographie - New Crystal Structures. 219 (1–4): 381–382. doi:10.1524/ncrs.2004.219.14.381. ISSN 2197-4578. {{cite journal}}: Check date values in: |date= (help)
  15. ^ Yamane, Hisanori; Sasaki, Shinya; Kajiwara, Takashi; Yamada, Takahiro; Shimada, Masahiko (2004-10-15). "Ba 19 In 9 N 9 , a subnitride containing isolated [In 5 ] 5− and [In 8 ] 12− Zintl anions". Acta Crystallographica Section E Structure Reports Online. 60 (10): i120–i123. doi:10.1107/S160053680402224X. ISSN 1600-5368.
  16. ^ Wendorff, Marco; Röhr, Caroline (2006-08). "Ba 11 In 6 O 3 : Ein Indid‐Oxid mit neuartigen [In 6 ]‐Baugruppen". Zeitschrift für anorganische und allgemeine Chemie. 632 (10–11): 1792–1798. doi:10.1002/zaac.200500530. ISSN 0044-2313. {{cite journal}}: Check date values in: |date= (help)
  17. ^ a b Su, Hang; Du, Feng; Luo, Shuaishuai; Nie, Zhiyong; Li, Rui; Xie, Wu; Shen, Bin; Wang, Yunfeng; Wang, An; Takabatake, Toshiro; Cao, Chao; Smidman, Michael; Yuan, Huiqiu (2023-03). "La4TX (T = Ru, Rh, Ir; X = Al, In): A family of noncentrosymmetric superconductors with tunable antisymmetric spin-orbit coupling". Science China Materials. 66 (3): 1114–1123. doi:10.1007/s40843-022-2201-2. ISSN 2095-8226. {{cite journal}}: Check date values in: |date= (help)
  18. ^ Petrovic, C; Pagliuso, P G; Hundley, M F; Movshovich, R; Sarrao, J L; Thompson, J D; Fisk, Z; Monthoux, P (2001-04-30). "Heavy-fermion superconductivity in CeCoIn 5 at 2.3 K". Journal of Physics: Condensed Matter. 13 (17): L337–L342. doi:10.1088/0953-8984/13/17/103. ISSN 0953-8984.
  19. ^ a b Sedelnikov, D.; Pavlova, V.; Kurenbaeva, Zh; Efimov, N.; Murashova, E. (2024-09). "Ternary intermetallic compounds R23Ru7In4 (R Ce, Pr): Synthesis, crystal structure and physical properties". Journal of Solid State Chemistry. 337: 124813. doi:10.1016/j.jssc.2024.124813. {{cite journal}}: Check date values in: |date= (help)
  20. ^ a b c Sedelnikov, D. V.; Kurenbaeva, Zh. M.; Murashova, E. V. (2023-04). "Ternary Intermetallic Compounds R26(RuxIn1 – x)17 (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu), Pr21Ru8.2In5 and Gd6Ru2In with High Content of Rare Earth Elements". Inorganic Materials. 59 (4): 423–435. doi:10.1134/S0020168523040106. ISSN 0020-1685. {{cite journal}}: Check date values in: |date= (help)
  21. ^ a b c Klenner, Steffen; Bönnighausen, Judith; Pöttgen, Rainer (2020-08-31). "EuIrIn 4 with LaCoAl 4 Type Structure – Synthesis, Magnetic Properties, and 151 Eu Mössbauer Spectroscopy". Zeitschrift für anorganische und allgemeine Chemie. 646 (16): 1359–1364. doi:10.1002/zaac.202000075. ISSN 0044-2313.
  22. ^ a b Subbarao, Udumula; Roy, Soumyabrata; Sarma, Saurav Ch.; Sarkar, Sumanta; Mishra, Vidyanshu; Khulbe, Yatish; Peter, Sebastian C. (2016-10-17). "Metal Flux Growth, Structural Relations, and Physical Properties of EuCu 2 Ge 2 and Eu 3 T 2 In 9 ( T = Cu and Ag)". Inorganic Chemistry. 55 (20): 10351–10360. doi:10.1021/acs.inorgchem.6b01598. ISSN 0020-1669.
  23. ^ Engelbert, Simon; Kösters, Jutta; Pöttgen, Rainer (2020-07-31). "SrIrIn 6 – An Intergrowth of SrIrIn 4 with Indium Slabs". Zeitschrift für anorganische und allgemeine Chemie. 646 (14): 1086–1090. doi:10.1002/zaac.201900348. ISSN 0044-2313.
  24. ^ Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C. (2015-03). "Crystal structure and properties of tetragonal EuAg4In8 grown by metal flux technique". Journal of Solid State Chemistry. 226: 126–132. doi:10.1016/j.jssc.2015.02.013. {{cite journal}}: Check date values in: |date= (help)
  25. ^ Dickman, Matthew J.; Schwartz, Benjamin V.G.; Latturner, Susan E. (2019-02). "Yb~51In13H27: A complex metal hydride grown from Yb/Li flux". Journal of Solid State Chemistry. 270: 187–191. doi:10.1016/j.jssc.2018.11.010. {{cite journal}}: Check date values in: |date= (help)
  26. ^ Subbarao, Udumula; Peter, Sebastian C. (2012-06-04). "Crystal Structure of YbCu 6 In 6 and Mixed Valence Behavior of Yb in YbCu 6– x In 6+ x ( x = 0, 1, and 2) Solid Solution". Inorganic Chemistry. 51 (11): 6326–6332. doi:10.1021/ic300552w. ISSN 0020-1669.
  27. ^ Gulay, Nataliya L.; Kreiner, Guido; Kalychak, Yaroslav M.; Pöttgen, Rainer (2022-09-27). "Lu 37 Ru 16.4 In 4 – coloring and vacancy formation in a new structure type closely related to a 8 × 8 × 8 bcc superstructure". Zeitschrift für Kristallographie - Crystalline Materials. 237 (8–9): 293–302. doi:10.1515/zkri-2022-0031. ISSN 2194-4946.
  28. ^ a b c Engelbert, Simon; Kösters, Jutta; Pöttgen, Rainer (2020-07-31). "SrIrIn 6 – An Intergrowth of SrIrIn 4 with Indium Slabs". Zeitschrift für anorganische und allgemeine Chemie. 646 (14): 1086–1090. doi:10.1002/zaac.201900348. ISSN 0044-2313.
  29. ^ a b c Khoury, Jason F.; Rettie, Alexander J. E.; Robredo, Iñigo; Krogstad, Matthew J.; Malliakas, Christos D.; Bergara, Aitor; Vergniory, Maia G.; Osborn, Raymond; Rosenkranz, Stephan; Chung, Duck Young; Kanatzidis, Mercouri G. (2020-04-01). "The Subchalcogenides Ir 2 In 8 Q (Q = S, Se, Te): Dirac Semimetal Candidates with Re-entrant Structural Modulation". Journal of the American Chemical Society. 142 (13): 6312–6323. doi:10.1021/jacs.0c00809. ISSN 0002-7863.
  30. ^ a b Gulay, Nataliya L.; Kalychak, Yaroslav M.; Pöttgen, Rainer (2021-07-27). "Intermetallic phases in the Sc–Ir–In system – synthesis and structure of Sc 1.024 Ir 2 In 0.976 and Sc 3 Ir 1.467 In 4". Zeitschrift für Naturforschung B. 76 (6–7): 361–367. doi:10.1515/znb-2021-0072. ISSN 1865-7117.
  31. ^ a b Heying, Birgit; Hoffmann, Rolf‐Dieter; Kösters, Jutta; Pöttgen, Rainer (2020-07-15). "SrIr 9 In 18 – A Structurally Complex Intermetallic Compound with Sr@Ir 4 In 12 , Ir@In 8 and Ir@In 9 Building Units". Zeitschrift für anorganische und allgemeine Chemie. 646 (13): 631–635. doi:10.1002/zaac.201900174. ISSN 0044-2313.
  32. ^ a b Calta, Nicholas P.; L. Bud’ko, Sergey; Rodriguez, Alexandra P.; Han, Fei; Chung, Duck Young; Kanatzidis, Mercouri G. (2016-03-21). "Synthesis, Structure, and Complex Magnetism of MIr 2 In 8 (M = Eu, Sr)". Inorganic Chemistry. 55 (6): 3128–3135. doi:10.1021/acs.inorgchem.6b00059. ISSN 0020-1669.
  33. ^ Sarkar, Sumanta; Gutmann, Matthias J.; Peter, Sebastian C. (2014). "The crystal structure and magnetic properties of a Zintl phase EuIrIn 4 : the first member of the Eu–Ir–In family". Dalton Trans. 43 (42): 15879–15886. doi:10.1039/C4DT01620C. ISSN 1477-9226.
  34. ^ Sarkar, Sumanta; Banerjee, Swastika; Jana, Rajkumar; Siva, Ramesh; Pati, Swapan K.; Balasubramanian, Mahalingam; Peter, Sebastian C. (2015-11-16). "Eu 3 Ir 2 In 15 : A Mixed-Valent and Vacancy-Filled Variant of the Sc 5 Co 4 Si 10 Structure Type with Anomalous Magnetic Properties". Inorganic Chemistry. 54 (22): 10855–10864. doi:10.1021/acs.inorgchem.5b01926. ISSN 0020-1669.
  35. ^ a b Gulay, Nataliya L.; Reimann, Maximilian Kai; Kalychak, Yaroslav M.; Pöttgen, Rainer (2022-06-27). "Tm 4 IrIn and Lu 4 PtIn – In 4 tetrahedra embedded in RE 22 polyhedra". Zeitschrift für Naturforschung B. 77 (6): 347–352. doi:10.1515/znb-2021-0166. ISSN 0932-0776.
  36. ^ a b Gulay, Nataliya L.; Reimann, Maximilian Kai; Kalychak, Yaroslav M.; Pöttgen, Rainer (2022-05-25). "Lu 20 Ir 5 In 3 and Lu 20 Pt 5 In 3 – superstructures of the Al 5 Co 2 type by coloring and distortion". Zeitschrift für anorganische und allgemeine Chemie. 648 (10). doi:10.1002/zaac.202100314. ISSN 0044-2313.
  37. ^ a b Heying, Birgit; Kösters, Jutta; Pöttgen, Rainer (2019-09-25). "CaPtIn 4 – an intergrowth variant of CaPtIn 2 and indium slabs". Zeitschrift für Naturforschung B. 74 (9): 693–698. doi:10.1515/znb-2019-0123. ISSN 1865-7117.
  38. ^ Rosa, P.F.S.; de Jesus, C.B.R.; Fisk, Z.; Pagliuso, P.G. (2014-12). "Physical properties of EuPtIn4 intermetallic antiferromagnet". Journal of Magnetism and Magnetic Materials. 371: 5–9. doi:10.1016/j.jmmm.2014.07.001. {{cite journal}}: Check date values in: |date= (help)
  39. ^ Gulay, Nataliya L.; Kösters, Jutta; Reimann, Maximilian Kai; Kalychak, Yaroslav M.; Pöttgen, Rainer (2022-10-26). "Lu 26 T 17– x In x ( T = Rh, Ir, Pt) – first indium intermetallics with Sm 26 Co 11 Ga 6 -type structure". Zeitschrift für Naturforschung B. 77 (10): 735–741. doi:10.1515/znb-2022-0111. ISSN 0932-0776.
  40. ^ Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; Corbett, John D. (2009-07-20). "Gold Tetrahedra as Building Blocks in K 3 Au 5 Tr (Tr = In, Tl) and Rb 2 Au 3 Tl and in Other Compounds: A Broad Group of Electron-Poor Intermetallic Phases". Inorganic Chemistry. 48 (14): 6573–6583. doi:10.1021/ic9004856. ISSN 0020-1669.
  41. ^ a b Tkachuk, Andriy V.; Mar, Arthur (2007-08). "Electron-poor SrAuxIn4−x (0.5⩽x⩽1.2) and SrAuxSn4−x (1.3⩽x⩽2.2) phases with the BaAl4-type structure". Journal of Solid State Chemistry. 180 (8): 2298–2304. doi:10.1016/j.jssc.2007.06.004. {{cite journal}}: Check date values in: |date= (help)
  42. ^ a b c Dai, Jing-Cao; Corbett, John D. (2007-05-01). "Transformation of AeIn 4 Indides (Ae = Ba, Sr) into an AeAu 2 In 2 Structure Type Through Gold Substitution". Inorganic Chemistry. 46 (11): 4592–4598. doi:10.1021/ic070142v. ISSN 0020-1669.
  43. ^ Liu, Shengfeng; Corbett, John D. (2004-08-01). "Synthesis, Structure, and Bonding of BaAuTl 3 and BaAuIn 3 : Stabilization of BaAl 4 -Type Examples of the Heavier Triels through Gold Substitution". Inorganic Chemistry. 43 (16): 4988–4993. doi:10.1021/ic040010r. ISSN 0020-1669.
  44. ^ a b Sarkar, Sumanta; Gutmann, Matthias J.; Peter, Sebastian C. (2013-10-02). "Crystal Structure and Magnetic Properties of Indium Flux Grown EuAu 2 In 4 and EuAuIn 4". Crystal Growth & Design. 13 (10): 4285–4294. doi:10.1021/cg400619p. ISSN 1528-7483.
  45. ^ a b Sebastian, C. Peter; Salvador, James; Martin, Joshua B.; Kanatzidis, Mercouri G. (2010-11-15). "New Intermetallics YbAu 2 In 4 and Yb 2 Au 3 In 5". Inorganic Chemistry. 49 (22): 10468–10474. doi:10.1021/ic101502e. ISSN 0020-1669.
  46. ^ Chondroudi, Maria; Peter, Sebastian C.; Malliakas, Christos D.; Balasubramanian, Mali; Li, Qing’An; Kanatzidis, Mercouri G. (2011-02-21). "Yb 3 AuGe 2 In 3 : An Ordered Variant of the YbAuIn Structure Exhibiting Mixed-Valent Yb Behavior". Inorganic Chemistry. 50 (4): 1184–1193. doi:10.1021/ic100975x. ISSN 0020-1669.